Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 347
Filtrar
1.
World J Microbiol Biotechnol ; 40(5): 156, 2024 Apr 08.
Artigo em Inglês | MEDLINE | ID: mdl-38587708

RESUMO

In the post-genome era, great progress has been made in metabolic engineering using recombinant DNA technology to enhance the production of high-value products by Streptomyces. With the development of microbial genome sequencing techniques and bioinformatic tools, a growing number of secondary metabolite (SM) biosynthetic gene clusters in Streptomyces and their biosynthetic logics have been uncovered and elucidated. In order to increase our knowledge about transcriptional regulators in SM of Streptomyces, this review firstly makes a comprehensive summary of the characterized factors involved in enhancing SM production and awakening SM biosynthesis. Future perspectives on transcriptional regulator engineering for new SM biosynthesis by Streptomyces are also provided.


Assuntos
Streptomyces , Streptomyces/genética , Metabolismo Secundário/genética , Mapeamento Cromossômico , Biologia Computacional , Engenharia Metabólica
2.
Artigo em Inglês | MEDLINE | ID: mdl-38625824

RESUMO

Previous observational studies have found that the gut microbiota is closely related to the pathogenesis of gastroesophageal reflux disease (GERD), while their causal relationship is unclear. A two-sample multivariate Mendelian randomization analysis was implemented to estimate the causal effect of gut microbiota on GERD. The gut microbiota aggregated statistics were derived from a meta-analysis of the largest available genome-wide association studies (GWAS) conducted by the MiBioGen alliance (n = 13 266). GERD aggregated statistics were derived from published GWAS (129 080 cases and 473 524 controls). A bidirectional two-sample Mendelian randomization study was conducted to explore the causal relationship between gut microbiota and GERD using the inverse variance weighted (IVW), Mendelian randomization Egger, single model, weighted median, and weighted model. To verify the stability of the main results of Mendelian randomization analysis, we performed sensitivity analysis. Based on the results of IVW, we found that Anaerostipes was causally associated with an increased risk of GERD [odds ratio (OR): 1.09, P = 0.018]. Eight gut microbiota taxa (Actinobacteria, Bifidobacteriales, Bifidobacteriaceae, Clostridiales vadin BB60 group, Rikenellaceae, Lachnospiraceae UCG004, Methanobrevibacter, and unknown genus id.1000000073) are predicted to act causally in suppressing the risk of GERD (P < 0.05). In addition, reverse Mendelian randomization analyses revealed that the abundance of 15 gut microbiota taxon was found to be affected by GERD. No significant estimation of heterogeneity or pleiotropy is detected. Our study presents a complicated causal relationship between gut microbiota and GERD that offers guidance on the selection of appropriate probiotics as clinical interventions for GERD.

3.
Hormones (Athens) ; 2024 Apr 02.
Artigo em Inglês | MEDLINE | ID: mdl-38564143

RESUMO

PURPOSE: Evidence from previous experimental and observational research demonstrates that the gut microbiota is related to circulating adipokine concentrations. Nevertheless, the debate as to whether gut microbiome composition causally influences circulating adipokine concentrations remains unresolved. This study aimed to take an essential step in elucidating this issue. METHODS: We used two-sample Mendelian randomization (MR) to causally analyze genetic variation statistics for gut microbiota and four adipokines (including adiponectin, leptin, soluble leptin receptor [sOB-R], and plasminogen activator inhibitor-1 [PAI-1]) from large-scale genome-wide association studies (GWAS) datasets. A range of sensitivity analyses was also conducted to assess the stability and reliability of the results. RESULTS: The composite results of the MR and sensitivity analyses revealed 22 significant causal associations. In particular, there is a suggestive causality between the family Clostridiaceae1 (IVW: ß = 0.063, P = 0.034), the genus Butyrivibrio (IVW: ß = 0.029, P = 0.031), and the family Alcaligenaceae (IVW: ß=-0.070, P = 0.014) and adiponectin. Stronger causal effects with leptin were found for the genus Enterorhabdus (IVW: ß=-0.073, P = 0.038) and the genus Lachnospiraceae (NK4A136 group) (IVW: ß=-0.076, P = 0.01). Eight candidate bacterial groups were found to be associated with sOB-R, with the phylum Firmicutes (IVW: ß = 0.235, P = 0.03) and the order Clostridiales (IVW: ß = 0.267, P = 0.028) being of more interest. In addition, the genus Roseburia (IVW: ß = 0.953, P = 0.022) and the order Lactobacillales (IVW: ß=-0.806, P = 0.042) were suggestive of an association with PAI-1. CONCLUSION: This study reveals a causal relationship between the gut microbiota and circulating adipokines and may help to offer novel insights into the prevention of abnormal concentrations of circulating adipokines and obesity-related diseases.

4.
Food Chem ; 450: 139261, 2024 Apr 09.
Artigo em Inglês | MEDLINE | ID: mdl-38657344

RESUMO

This study employed an innovative copper oxide/cuprous oxide (CuO/Cu2O) polyhedron­cadmium sulphide quantum dots (CdS QDs) double Z-scheme heterostructure as a matrix for the cathodic PEC determination of mercury ions (Hg2+). First, the CuO/Cu2O polyhedral composite was prepared by calcining a copper-based metal organic framework (Cu-MOF). Subsequently, the amino-modified CuO/Cu2O was integrated with mercaptopropionic acid (MPA)-capped CdS QDs to form a CuO/Cu2O polyhedron-CdS QDs double Z-scheme heterostructure, producing a strong cathodic photocurrent. Importantly, this heterostructure exhibited a specifically reduced photocurrent for Hg2+ when using CdS QDs as Hg2+-recognition probe. This was attributed to the extreme destruction of the double Z-scheme heterostructure and the in situ formation of the CuO/Cu2O-CdS/HgS heterostructure. Besides, p-type HgS competed with the matrix for electron acceptors, further decreasing the photocurrent. Consequently, Hg2+ was sensitively assayed, with a low detection limit (0.11 pM). The as-prepared PEC sensor was also used to analyse Hg2+ in food and the environment.

5.
Nat Prod Rep ; 2024 Apr 23.
Artigo em Inglês | MEDLINE | ID: mdl-38651516

RESUMO

Covering: 1993 to the end of 2022As the rapid development of antibiotic resistance shrinks the number of clinically available antibiotics, there is an urgent need for novel options to fill the existing antibiotic pipeline. In recent years, antimicrobial peptides have attracted increased interest due to their impressive broad-spectrum antimicrobial activity and low probability of antibiotic resistance. However, macromolecular antimicrobial peptides of plant and animal origin face obstacles in antibiotic development because of their extremely short elimination half-life and poor chemical stability. Herein, we focus on medium-sized antibacterial peptides (MAPs) of microbial origin with molecular weights below 2000 Da. The low molecular weight is not sufficient to form complex protein conformations and is also associated to a better chemical stability and easier modifications. Microbially-produced peptides are often composed of a variety of non-protein amino acids and terminal modifications, which contribute to improving the elimination half-life of compounds. Therefore, MAPs have great potential for drug discovery and are likely to become key players in the development of next-generation antibiotics. In this review, we provide a detailed exploration of the modes of action demonstrated by 45 MAPs and offer a concise summary of the structure-activity relationships observed in these MAPs.

6.
Front Endocrinol (Lausanne) ; 15: 1364157, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38586452

RESUMO

Background: Multiple evidence suggests that thyroid function is associated with polycystic ovary syndrome (PCOS), but whether thyroid function is causally related to PCOS is unclear. To investigate whether the association reflect causality, a Mendelian randomization (MR) analysis was conducted. Methods: Single nucleotide polymorphisms (SNPs) involved in this study were acquired from The ThyroidOmics Consortium and the IEU Open Genome-wide association study (GWAS) database, respectively. In forward MR analysis, we included normal free thyroxine (FT4, n=49,269), normal thyroid-stimulating hormone (TSH, n=54,288), hypothyroidism (n=53,423) and hyperthyroidism (n=51,823) as exposure. The outcome was defined as PCOS in a sample size of 16,380,318 individuals. The exposure in the reverse MR analyses was chosen as PCOS, while the outcome consisted of the four phenotypes of thyroid function. The inverse-variance weighted (IVW) method was performed as the major analysis, supplemented by sensitivity analyses. Results: The occurrence of PCOS was associated with increased risk of hyperthyroidism (IVW, OR=1.08, 95%CI=1.02-1.13, P=0.004). No evidence suggested that other phenotypes of thyroid function were related to PCOS. Conclusions: Our findings demonstrate a cause-and-effect connection between PCOS and hyperthyroidism. The study established foundation for further investigation for interaction between thyroid function and PCOS.


Assuntos
Hipertireoidismo , Síndrome do Ovário Policístico , Feminino , Humanos , Síndrome do Ovário Policístico/genética , Estudo de Associação Genômica Ampla , Análise da Randomização Mendeliana , Hipertireoidismo/epidemiologia , Hipertireoidismo/genética
7.
Molecules ; 29(7)2024 Apr 08.
Artigo em Inglês | MEDLINE | ID: mdl-38611953

RESUMO

Bacterial virulence factors and biofilm development can be controlled by the quorum-sensing (QS) system, which is also intimately linked to antibiotic resistance in bacteria. In previous studies, many researchers found that quorum-sensing inhibitors (QSIs) can affect the development of bacterial biofilms and prevent the synthesis of many virulence factors. However, QSIs alone have a limited ability to suppress bacteria. Fortunately, when QSIs are combined with antibiotics, they have a better therapeutic effect, and it has even been demonstrated that the two together have a synergistic antibacterial effect, which not only ensures bactericidal efficiency but also avoids the resistance caused by excessive use of antibiotics. In addition, some progress has been made through in vivo studies on the combination of QSIs and antibiotics. This article mainly expounds on the specific effect of QSIs combined with antibiotics on bacteria and the combined antibacterial mechanism of some QSIs and antibiotics. These studies will provide new strategies and means for the clinical treatment of bacterial infections in the future.


Assuntos
Antibacterianos , Infecções Bacterianas , Humanos , Antibacterianos/farmacologia , Infecções Bacterianas/tratamento farmacológico , Percepção de Quorum , Biofilmes , Fatores de Virulência
8.
BMC Microbiol ; 24(1): 120, 2024 Apr 06.
Artigo em Inglês | MEDLINE | ID: mdl-38582825

RESUMO

BACKGROUND: Chrysomycin A (CA) is a promising antibiotic for treatment of Gram-positive bacterial infections and cancers. In order to enhance CA yield, optimization of fermentation conditions and medium components was carried out on strain Streptomyces sp. 891-B6, an UV-induced mutant with improved CA titer compared with its wide-type marine strain 891. RESULTS: Using one-way experiment, the optimal fermentation conditions for CA production in 1-L shake flask were obtained as follows: 12 days of fermentation time, 5 days of seed age, 5% of inoculum volume ratio, 200 mL of loading volume and 6.5 of initial pH. By response surface methodology, the optimal medium components determined as glucose (39.283 g/L), corn starch (20.662 g/L), soybean meal (15.480 g/L) and CaCO3 (2.000 g/L). CONCLUSION: Validation tests showed that the maximum yield of CA reached 1601.9 ± 56.7 mg/L, which was a 60% increase compared to the initial yield (952.3 ± 53.2 mg/L). These results provided an important basis for scale-up production of CA by strain 891-B6.


Assuntos
Streptomyces , Fermentação , Streptomyces/genética , Aminoglicosídeos , Antibacterianos , Meios de Cultura
9.
J Am Chem Soc ; 146(10): 6686-6696, 2024 Mar 13.
Artigo em Inglês | MEDLINE | ID: mdl-38425051

RESUMO

Naturally evolved metabolons have the ability to assemble and disassemble in response to environmental stimuli, allowing for the rapid reorganization of chemical reactions in living cells to meet changing cellular needs. However, replicating such capability in synthetic metabolons remains a challenge due to our limited understanding of the mechanisms by which the assembly and disassembly of such naturally occurring multienzyme complexes are controlled. Here, we report the synthesis of chemical- and light-responsive protein cages for assembling synthetic metabolons, enabling the dynamic regulation of enzymatic reactions in living cells. Particularly, a chemically responsive domain was fused to a self-assembled protein cage subunit, generating engineered protein cages capable of displaying proteins containing cognate interaction domains on their surfaces in response to small molecular cues. Chemical-induced colocalization of sequential enzymes on protein cages enhances the specificity of the branched deoxyviolacein biosynthetic reactions by 2.6-fold. Further, by replacing the chemical-inducible domain with a light-inducible dimerization domain, we created an optogenetic protein cage capable of reversibly recruiting and releasing targeted proteins onto and from the exterior of the protein cages in tens of seconds by on-off of blue light. Tethering the optogenetic protein cages to membranes enables the formation of light-switchable, membrane-bound metabolons, which can repeatably recruit-release enzymes, leading to the manipulation of substrate utilization across membranes on demand. Our work demonstrates a powerful and versatile strategy for constructing dynamic metabolons in engineered living cells for efficient and controllable biocatalysis.


Assuntos
Complexos Multienzimáticos , Proteínas , Proteínas/química , Complexos Multienzimáticos/química
10.
Microb Cell Fact ; 23(1): 93, 2024 Mar 27.
Artigo em Inglês | MEDLINE | ID: mdl-38539193

RESUMO

Fungal non-ribosomal peptide synthetase (NRPS)-encoding products play a paramount role in new drug discovery. Fusarium, one of the most common filamentous fungi, is well-known for its biosynthetic potential of NRPS-type compounds with diverse structural motifs and various biological properties. With the continuous improvement and extensive application of bioinformatic tools (e.g., anti-SMASH, NCBI, UniProt), more and more biosynthetic gene clusters (BGCs) of secondary metabolites (SMs) have been identified in Fusarium strains. However, the biosynthetic logics of these SMs have not yet been well investigated till now. With the aim to increase our knowledge of the biosynthetic logics of NPRS-encoding products in Fusarium, this review firstly provides an overview of research advances in elucidating their biosynthetic pathways.


Assuntos
Fusarium , Fusarium/genética , Fusarium/metabolismo , Fungos/metabolismo , Peptídeo Sintases/genética , Peptídeo Sintases/metabolismo , Biologia Computacional , Família Multigênica , Vias Biossintéticas/genética
11.
Proc Natl Acad Sci U S A ; 121(9): e2316922121, 2024 Feb 27.
Artigo em Inglês | MEDLINE | ID: mdl-38381790

RESUMO

The self-assembly of proteins into curved structures plays an important role in many cellular processes. One good example of this phenomenon is observed in the septum-forming protein (SepF), which forms polymerized structures with uniform curvatures. SepF is essential for regulating the thickness of the septum during bacteria cell division. In Bacillus subtilis, SepF polymerization involves two distinct interfaces, the ß-ß and α-α interfaces, which define the assembly unit and contact interfaces, respectively. However, the mechanism of curvature formation in this step is not yet fully understood. In this study, we employed solid-state NMR (SSNMR) to compare the structures of cyclic wild-type SepF assemblies with linear assemblies resulting from a mutation of G137 on the ß-ß interface. Our results demonstrate that while the sequence differences arise from the internal assembly unit, the dramatic changes in the shape of the assemblies depend on the α-α interface between the units. We further provide atomic-level insights into how the angular variation of the α2 helix on the α-α interface affects the curvature of the assemblies, using a combination of SSNMR, cryo-electron microscopy, and simulation methods. Our findings shed light on the shape control of protein assemblies and emphasize the importance of interhelical contacts in retaining curvature.


Assuntos
Citocinese , Microscopia Crioeletrônica , Polimerização , Divisão Celular , Mutação
12.
Biol Psychiatry ; 2024 Feb 04.
Artigo em Inglês | MEDLINE | ID: mdl-38316331

RESUMO

BACKGROUND: Although brain structural covariance network (SCN) abnormalities have been associated with suicidal thoughts and behaviors (STBs) in individuals with major depressive disorder (MDD), previous studies have reported inconsistent findings based on small sample sizes, and underlying transcriptional patterns remain poorly understood. METHODS: Using a multicenter magnetic resonance imaging dataset including 218 MDD patients with STBs, 230 MDD patients without STBs, and 263 healthy control participants, we established individualized SCNs based on regional morphometric measures and assessed network topological metrics using graph theoretical analysis. Machine learning methods were applied to explore and compare the diagnostic value of morphometric and topological features in identifying MDD and STBs at the individual level. Brainwide relationships between STBs-related connectomic alterations and gene expression were examined using partial least squares regression. RESULTS: Group comparisons revealed that SCN topological deficits associated with STBs were identified in the prefrontal, anterior cingulate, and lateral temporal cortices. Combining morphometric and topological features allowed for individual-level characterization of MDD and STBs. Topological features made a greater contribution to distinguishing between patients with and without STBs. STBs-related connectomic alterations were spatially correlated with the expression of genes enriched for cellular metabolism and synaptic signaling. CONCLUSIONS: These findings revealed robust brain structural deficits at the network level, highlighting the importance of SCN topological measures in characterizing individual suicidality and demonstrating its linkage to molecular function and cell types, providing novel insights into the neurobiological underpinnings and potential markers for prediction and prevention of suicide.

13.
Brain Imaging Behav ; 2024 Feb 26.
Artigo em Inglês | MEDLINE | ID: mdl-38407738

RESUMO

Suicide is a major concern for health, and depression is an established proximal risk factor for suicide. This study aimed to investigate white matter features associated with suicide. We constructed white matter structural networks by deterministic tractography via diffusion tensor imaging in 51 healthy controls, 47 depressed patients without suicide plans or attempts and 56 depressed patients with suicide plans or attempts. Then, graph theory analysis was used to measure global and nodal network properties. We found that local efficiency was decreased and path length was increased in suicidal depressed patients compared to healthy controls and non-suicidal depressed patients; moreover, the clustering coefficient was decreased in depressed patients compared to healthy controls; and the global efficiency and normalized characteristic path length was increased in suicidal depressed patients compared to healthy controls. Similarly, compared with those in non-suicidal depressed patients, nodal efficiency in the thalamus, caudate, medial orbitofrontal cortex, hippocampus, olfactory cortex, supplementary motor area and Rolandic operculum was decreased. In summary, compared with those of non-suicidal depressed patients, the structural connectome of suicidal depressed patients exhibited weakened integration and segregation and decreased nodal efficiency in the fronto-limbic-basal ganglia-thalamic circuitry. These alterations in the structural networks of depressed suicidal brains provide insights into the underlying neurobiology of brain features associated with suicide.

14.
ACS Omega ; 9(6): 6492-6504, 2024 Feb 13.
Artigo em Inglês | MEDLINE | ID: mdl-38371813

RESUMO

Extracellular vesicles (EVs) are increasingly used for disease diagnosis and treatment. Among them, red blood cell-derived EVs (RBC-EVs) have attracted great attention due to their abundant sources and low risks of gene transfer (RBC-EVs lack nuclear and mitochondrial DNA). Here, we first revealed the high expression level of membrane protein solute carrier family 4 member 1 (SLC4A1) in RBC-EVs through proteomic analysis. We then identified several binding peptides with high affinity for the SLC4A1 extracellular domain (SLC4A1-EC) from phage display library screening. A high affinity of SLC4A1-EC and the three peptides (XRB2, XRE4, and XRH7) were assessed in vitro using surface plasmon resonance analysis and SDS-polyacrylamide gel electrophoresis (SDS-PAGE). The binding sites of SLC4A1-EC and polypeptides were further predicted by LigPlot + analysis, and the results showed that these three polypeptides could bind to part of the hydrophobic residues of SLC4A1-EC. The binding efficiency of the anchor peptides to the RBC-EVs was further verified by flow cytometry and fluorescence imaging. In conclusion, we successfully screened three specific RBC-EV-targeting peptides which could potentially be utilized for isolating RBC-derived EVs from serum samples. More importantly, this peptide could be coupled with targeting peptides to modify RBC-EVs for drug delivery. Our work will provide a viable method for optimizing the function of RBC-EVs.

15.
Nat Prod Res ; : 1-17, 2024 Feb 19.
Artigo em Inglês | MEDLINE | ID: mdl-38372230

RESUMO

The genus Helleborus belongs to the Ranunculaceae family, distributed in southeastern Europe and western Asia. In folk medicine, it is commonly used as an anti-inflammatory and analgesic medicine for rheumatoid arthritis and bruises. Through reviewing recent articles, it was found that two hundred and twenty-six compounds have been isolated and identified from the genus Helleborus. These compounds include steroids, flavonoids, phenylpropanoids, lignans, anthraquinones, phenolics and others. Among them, the main chemical constituents are steroids. Pharmacological studies show Helleborus has anti-cancer, immunomodulatory, anti-inflammatory, analgesic, anti-hyperglycaemic, antioxidant and antibacterial properties. This article reviews the botany, phytochemistry, pharmacological effects and clinical applications of the genus Helleborus. Hopefully, it will provide a reference for in-depth research and exploitation of the genus Helleborus.

16.
Geroscience ; 46(3): 3135-3147, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38200357

RESUMO

Vascular aging influences hemodynamics, elevating risks for vascular diseases and dementia. We recently demonstrated that knockout (KO) of Dusp5 enhances cerebral and renal hemodynamics and cognitive function. This improvement correlates with elevated pPKC and pERK1/2 levels in the brain and kidneys. Additionally, we observed that Dusp5 KO modulates the passive mechanical properties of cerebral and renal arterioles, associated with increased myogenic tone at low pressure, enhanced distensibility, greater compliance, and reduced stiffness. The present study evaluates the structural and mechanical properties of the middle cerebral artery (MCA) in Dusp5 KO rats. We found that vascular smooth muscle cell layers and the collagen content in the MCA wall are comparable between Dusp5 KO and control rats. The internal elastic lamina in the MCA of Dusp5 KO rats exhibits increased thickness, higher autofluorescence intensity, smaller fenestrae areas, and fewer fenestrations. Despite an enhanced myogenic response and tone of the MCA in Dusp5 KO rats, other passive mechanical properties, such as wall thickness, cross-sectional area, wall-to-lumen ratio, distensibility, incremental elasticity, circumferential wall stress, and elastic modulus, do not significantly differ between strains. These findings suggest that while Dusp5 KO has a limited impact on altering the structural and mechanical properties of MCA, its primary role in ameliorating hemodynamics and cognitive functions is likely attributable to its enzymatic activity on cerebral arterioles. Further research is needed to elucidate the specific enzymatic mechanisms and explore potential clinical applications in the context of vascular aging.


Assuntos
Encéfalo , Fosfatases de Especificidade Dupla , Artéria Cerebral Média , Animais , Ratos , Envelhecimento , Encéfalo/irrigação sanguínea , Cognição , Fosfatases de Especificidade Dupla/genética , Fosfatases de Especificidade Dupla/metabolismo , Artéria Cerebral Média/metabolismo
17.
Mar Drugs ; 22(1)2024 Jan 22.
Artigo em Inglês | MEDLINE | ID: mdl-38276653

RESUMO

Natural alkaloids originating from actinomycetes and synthetic derivatives have always been among the important suppliers of small-molecule drugs. Among their biological sources, Streptomyces is the highest and most extensively researched genus. Marine-derived Streptomyces strains harbor unconventional metabolic pathways and have been demonstrated to be efficient producers of biologically active alkaloids; more than 60% of these compounds exhibit valuable activity such as antibacterial, antitumor, anti-inflammatory activities. This review comprehensively summarizes novel alkaloids produced by marine Streptomyces discovered in the past decade, focusing on their structural features, biological activity, and pharmacological mechanisms. Future perspectives on the discovery and development of novel alkaloids from marine Streptomyces are also provided.


Assuntos
Actinobacteria , Alcaloides , Streptomyces , Streptomyces/metabolismo , Testes de Sensibilidade Microbiana , Alcaloides/química , Antibacterianos/farmacologia , Antibacterianos/metabolismo , Actinobacteria/metabolismo
18.
Recent Pat Anticancer Drug Discov ; 19(3): 308-315, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-37723963

RESUMO

BACKGROUND: Gefitinib, an Epidermal Growth Factor Receptor Tyrosine Kinase Inhibitor (EGFR-TKI), frequently causes side effects when used to treat non-small cell lung cancer. OBJECTIVE: The purpose of this experiment was to investigate the side effect of gefitinib on the skin and colon of mice. METHODS: Male Balb/c nu-nu nude mice aged 4-5 weeks were used as xenograft tumor models, and gefitinib at 150 mg/kg and 225 mg/kg was started at 9 days after the xenograft tumor grew out. The mice's weights and tumor volumes were tracked concurrently, and the mouse skin adverse reactions and diarrhea were observed during the treatment. The animal tissues were subjected to biochemical and pathological evaluations after 14 days. RESULTS: Gefitinib effectively decreased the size and weight of transplanted tumors in nude mice, while also lowering body weight and raising indexes of the liver and spleen. Gefitinib could cause skin adverse reactions and diarrhea in mice. Further pathological investigation revealed tight junction- related markers in the mice's skin and colon to be reduced and macrophages and neutrophils to be increased after gefitinib treatment. CONCLUSION: The findings imply that gefitinib has negative effects on the skin and colon. Gefitinib- induced skin and colon adverse reactions in mice have been successfully modeled in this study.


Assuntos
Antineoplásicos , Carcinoma Pulmonar de Células não Pequenas , Neoplasias Pulmonares , Humanos , Masculino , Camundongos , Animais , Gefitinibe/uso terapêutico , Neoplasias Pulmonares/patologia , Carcinoma Pulmonar de Células não Pequenas/tratamento farmacológico , Camundongos Nus , Quinazolinas/efeitos adversos , Receptores ErbB/metabolismo , Diarreia/induzido quimicamente , Diarreia/tratamento farmacológico , Colo/metabolismo , Colo/patologia , Inibidores de Proteínas Quinases/uso terapêutico , Linhagem Celular Tumoral , Ensaios Antitumorais Modelo de Xenoenxerto , Antineoplásicos/efeitos adversos , Resistencia a Medicamentos Antineoplásicos
19.
Sci Total Environ ; 912: 168822, 2024 Feb 20.
Artigo em Inglês | MEDLINE | ID: mdl-38043821

RESUMO

The preparation of biochar from digestate is one of the effective ways to achieve the safe disposal and resource utilization of digestate. Nevertheless, up to now, a comprehensive review encompassing the factors influencing anaerobic digestate-derived biochar production and its applications is scarce in the literature. Therefore, to fill this gap, the present work first outlined the research hotspots of digestate in the last decade using bibliometric statistical analysis with the help of VOSviewer. Then, the characteristics of the different sources of digestate were summarized. Furthermore, the influencing factors of biochar preparation from digestate and the modification methods of digestate-derived biochar and associated mechanisms were analyzed. Notably, a comprehensive synthesis of anaerobic digestate-derived biochar applications is provided, encompassing enhanced anaerobic digestion, heavy metal remediation, aerobic composting, antibiotic/antibiotic resistance gene removal, and phosphorus recovery from digestate liquor. The economic and environmental impacts of digestate-derived biochar were also analyzed. Finally, the development prospect and challenges of using biochar from digestate to combat environmental pollution are foreseen. The aim is to not only address digestate management challenges at the source but also offer a novel path for the resourceful utilization of digestate.


Assuntos
Carvão Vegetal , Recuperação e Remediação Ambiental , Meio Ambiente , Poluição Ambiental , Anaerobiose
20.
Plant J ; 117(5): 1604-1613, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38038993

RESUMO

Sorghum is an important crop for food, forage, wine and biofuel production. To enhance its transformation efficiency without negative developmental by-effects, we investigated the impact of GRF4-GIF1 chimaera and GRF5 on sorghum transformation. Both GRF4-GIF1 and GRF5 effectively improved the transformation efficiency of sorghum and accelerated the transformation process of sorghum to less than 2 months which was not observed when using BBM-WUS. As agrobacterium  effectors increase the ability of T-DNA transfer into plant cells, we checked whether ternary vector system can additively enhance sorghum transformation. The combination of GRF4-GIF1 with helper plasmid pVS1-VIR2 achieved the highest transformation efficiency, reaching 38.28%, which is 7.71-fold of the original method. Compared with BBM-WUS, overexpressing GRF4-GIF1 caused no noticeable growth defects in sorghum. We further developed a sorghum CRISPR/Cas9 gene-editing tool based on this GRF4-GIF1/ternary vector system, which achieved an average gene mutation efficiency of 41.36%, and null mutants were created in the T0 generation.


Assuntos
Sorghum , Sorghum/genética , Plantas Geneticamente Modificadas/genética , Transformação Genética , Edição de Genes/métodos , Agrobacterium/genética , Grão Comestível/genética , Sistemas CRISPR-Cas
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...